Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
In recent decades, more than 100 different mechanophores with a broad range of activation forces have been developed. For various applications of mechanophores in polymer materials, it is crucial to selectively activate the mechanophores with high efficiency, avoiding nonspecific bond scission of the material. In this study, we embedded cyclobutane-based mechanophore cross-linkers (I and II) with varied activation forces (fa) in the first network of the double network hydrogels and quantitively investigated the activation selectivity and efficiency of these mechanophores. Our findings revealed that cross-linker I, with a lower activation force relative to the bonds in the polymer main chain (fa-I/fa-chain = 0.8 nN/3.4 nN), achieved efficient activation with 100% selectivity. Conversely, an increase of the activation force of mechanophore II (fa-II/fa-chain = 2.5 nN/3.4 nN) led to a significant decrease of its activation efficiency, accompanied by a substantial number of nonspecific bond scission events. Furthermore, with the coexistence of two cross-linkers, significantly different activation forces resulted in the almost complete suppression of the higher-force one (i.e., I and III, fa-I/fa-III = 0.8 nN/3.4 nN), while similar activation forces led to simultaneous activations with moderate efficiencies (i.e., I and IV, fa-I/fa-IV = 0.8 nN/1.6 nN). These findings provide insights into the prevention of nonspecific bond rupture during mechanophore activation and enhance our understanding of the damage mechanism within polymer networks when using mechanophores as detectors. Besides, it establishes a principle for combining different mechanophores to design multiple mechanoresponsive functional materials.more » « less
-
Abstract Contents 1. Introduction- Methods and software for electronic structure based simulations of chemistry and materials 2. Density Functional Theory: Formalism and Current Directions 3. Density functional methods - implementation, challenges, successes 4. Green’s function based many-body perturbation theory 5. Wave-function theory approaches – explicit approaches to electron correlation 6. Quantum Monte Carlo and stochastic electronic structure methods 7. Heavy element relativity, spin-orbit physics, and magnetism 8. Semiempirical methods 9. Simulating Nuclear Dynamics with Quantum Effects 10. Real-Time Propagation in Electronic Structure Theory 11. Spectroscopy 12. Tools for exploring potential energy surfaces 13. Managing complex computational workflows 14. Current and Future Computer Architectures 15. Electronic structure software engineering 16. Education and Training in Electronic Structure Theory: Navigating an Evolving Landscape 17. Electronic structure theory facing industry and realistic modeling of experiments 18. List of Acronymsmore » « less
An official website of the United States government
